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There is large evidence that infants are able to exploit statistical cues to discover the words of their language.
However, how they proceed to do so is the object of enduring debates. The prevalent position is that words
are extracted from the prior computation of statistics, in particular the transitional probabilities between sylla-
bles. As an alternative, chunk-based models posit that the sensitivity to statistics results from other processes,
wherebymany potential chunks are considered as candidatewords, then selected as a function of their relevance.
These two classes of models have proven to be difficult to dissociate. We propose here a procedure, which leads
to contrasted predictions regarding the influence of a first language, L1, on the segmentation of a second
language, L2. Simulations run with PARSER (Perruchet & Vinter, 1998), a chunk-based model, predict that
when the words of L1 become word-external transitions of L2, learning of L2 should be depleted until reaching
below chance level, at least before extensive exposure to L2 reverses the effect. In the same condition, a
transitional-probability based model predicts above-chance performance whatever the duration of exposure to
L2. PARSER's predictions were confirmed by experimental data: Performance on a two-alternative forced choice
test between words and part-words from L2 was significantly below chance even though part-words were less
cohesive in terms of transitional probabilities than words.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Language acquisition initially proceeds from auditory input, and lin-
guistic utterances usually consist of sentences linking several words
without clear physical boundaries. The question thus arises: How do in-
fants become able to segment a continuous speech stream into words?
Recent psycholinguistic research has identified a number of potentially
relevant factors. Analyses of natural languages have shown that a num-
ber of acoustical, prosodic, and statistical features are correlated with
the presence of word boundaries, and could therefore be used as cues
for segmenting the speech signal into words. There is large evidence
that these cues are used at a various extent according to the age of the
learners and the specific structure of the language (Thiessen & Saffran,
2003), and that they interact in complex ways (Creel, Tanenhaus, &
Aslin, 2006; Onnis, Monaghan, Richmond, & Chater, 2005; Perruchet &
Tillmann, 2010).

In this paper, we focus on statistical cues, such as theywere revealed
in the seminal studies by Saffran and collaborators. For instance, Saffran,
Aslin, and Newport (1996) used an artificial language consisting of four
trisyllabic words, such as golatu and daropi. In the familiarization phase,
8-month-old infants listened to a sequence of words, which were read
e, LEAD/CNRS, Pôle AAFE, 11
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by a speech synthesizer in randomorder in immediate succession,with-
out pauses or any other prosodic cues. In the following test phase using
a familiarization-preference procedure, the infantswere presentedwith
repetitions of either words or trisyllabic “part-words”, such as tudaro,
consisting of the final syllable of a word joined to the first two syllables
of another word. Infants showed longer listening times for part-words,
suggesting that they were perceived as novel sequences. This and
other studies (e.g., Aslin, Saffran, & Newport, 1998) are usually
interpreted as indicating that infants exploit the transitional probabili-
ties (TPs) between syllables, because word-internal TPs are stronger
than TPs between the syllables that compose the part-words (i.e.,
containing word-external TPs).

1.1. Two competing hypotheses

Theprevalent interpretation for this remarkable outcome is that par-
ticipants perform statistical computations (e.g., Aslin et al., 1998;
Endress & Mehler, 2009). The reasoning is straightforward: If learners'
behavior turns out to be sensitive to a given statistical property of the
input, then this implies that learners somehow compute the relevant
statistics. Typically, learners are assumed to compute the TPs between
successive syllables (Saffran, Newport, & Aslin, 1996). In a competing
approach, the sensitivity to statistics is a mandatory consequence of
the engagement of other cognitive processes. Instead of inferring the
words from the prior computation of TPs, the general strategy shared
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by all chunk-based models is that many potential chunks are created,
then selected as a function of their relevance (e.g., Brent & Cartwright,
1996; Frank, Goldwater, Griffiths, & Tenenbaum, 2010; Perruchet &
Vinter, 1998; Robinet, Lemaire, & Gordon, 2011; Servan-Schreiber &
Anderson, 1990).

Although relying on very different processes, the two accounts
coined hereafter as the TP-based approach and the chunk-based
approach, respectively, appear to be surprisingly difficult to dissociate.
We propose below an experimental design leading to contrast the
predictions of these two approaches. Before introducing to this new de-
sign, however, a finer description of the chunk-basedmodel that will be
considered here, namely PARSER (Perruchet & Vinter, 1998), is in order.

1.2. PARSER model

Let us consider the famous Saffran, Newport et al. (1996) study in
which six trisyllabic words, babupu, bupada, dutaba, patubi, pidabu,
and tutibu, were repeated in random order. The speech flow may
begin as:

(1) babupututibubabupudutabapatubibupadapatubidutabababu
pupidabu…

PARSER postulates that (1) will be perceived as, for example:

(2) babu putu ti buba bupudu ta bapa tubi bupada pa tubi duta bababu
pupi dabu…

where spaces stand for subjective boundaries. These boundaries are in-
troduced as a consequence of attentional mechanisms, which naturally
segment the sensory input into small disjunctive parts of various
lengths. 1 The randomly determined fragments are created as provision-
al chunks as they appear in the language. Clearly, a few of them are rel-
evant to the structure of the language (bupada is a word, and babu, tubi,
and duta are components of words) and others are irrelevant. How does
themodel operate a selectionwithout calling to sophisticated computa-
tions? In PARSER, the fate of a new chunkdepends on the probability for
this new chunk to be encountered later. The relevant units emerge
through a selection process based on forgetting, which leads to elimi-
nate the less cohesive parts among all parts generated by the initial
chunking of the material. For instance, bababu is doomed to forgetting,
because it will reoccur only when dutaba is followed by babupu. By con-
trast, babu and bupada have more chance of resisting to forgetting be-
cause they will be strengthened on each occurrence of babupu and
bupada respectively, whatever the surrounding words.

Forgetting, in PARSER, is the end-product of both decay and interfer-
ence. If forgetting was only due to decay, PARSER would be only sensi-
tive to the raw frequency: The candidate units resisting to forgetting
would be those that occur themost frequently in the speech flow. Inter-
ference allows themodel to be sensitive tomore sophisticatedmeasures
of contingency. To illustrate, putu, which straddles aword boundary, has
been processed as a unit in (2). Theweight of this unit will be decreased
each time another interfering unit will be perceived. This is the case
with the units bupudu and pupi in (2), because pu is present and follow-
ed by another syllable as tu. The resulting effect is nothing else here than
the classical effect of retroactive interference, whereby learningAC has a
more detrimental influence on the retrieval of a previously learned pair
1 Certainly the subjective experience of the beginning listenerswould be rather the per-
ception of a continuous and unintelligible speechflow, fromwhich a sequence of a few syl-
lables pops out from time to time. This does not change the rationale of the model.
Simulations have shown that PARSER was able to reproduce the performance of actual
participants while processing only 3 to 5% of the syllables of the languages (Perruchet &
Vinter, 1998, Study 2). For instance, only putu or any other bisyllabic items may have
popped out from Sequence (1), without hampering the ability of the model to account
for human performance.
AB than learning a list of unrelated items (e.g., DE). It is clear that, over-
all, putuwill receive more interference than a within-word component,
given that pu, as a final syllable of a word, may be followed by several
different syllables. This example illustrates that increasing the sources
of interference and decreasing TPs are two sides of the same coin,
because both result from an increased number of possible adjacent
events (Perruchet & Poulin-Charronnat, 2012a). As a consequence,
implementing interference as a mechanism of chunk selection in
PARSER makes the model responsive to TPs.

Crucially, once a new chunkhas been created on thebasis of its inter-
nal consistency, it plays the role of a newprimitive,which constrains the
coding of the incoming information as did the initial primitives (i.e., the
syllables). For instance, once bupada has been built as a perceptual
primitive for the model, the following percept necessarily begins with
the following word, hence increasing the probability of discovering
this word (i.e., patubi from (1)). In this way, PARSER naturally accounts
for the fact that known words help to discover new words (Bortfeld,
Morgan, Golinkoff, & Rathbun, 2005; Dahan & Brent, 1999), as analyzed
in Perruchet and Tillmann (2010).

1.3. The present study

The rationale of the present study directly follows from the principle
stated just above. We noted that knowing bupada helps to discover
patubi when exposed to bupadapatubi. However, a more general claim
is that the probability of creating a new unit depends on the units al-
ready present in the lexicon, whether relevant or not. If dapa has been
created, this will trigger the formation of chunks such as bupa or tubi,
which are not words, when exposed to bupadapatubi. More generally,
if a wrong unit has been created, this will trigger the formation of
other wrong units. This happens only rarely in natural settings, given
that decay and interference tend to select the relevant units (i.e., the
words) of the language. But the phenomenon can be artificially induced
in controlled conditions through the prior presentation of irrelevant
units. This offers the opportunity of manipulations leading to predict
opposite effects in a chunk-based framework and in a TP-based frame-
work, which does not exploit such a principle.

In keepingwith this strategy, the present study examines how famil-
iarization with a first language, L1, affects the segmentation of a second
language, L2. In the following experiment, L2was composed of three tri-
syllabic words, ABC, DEF, and GHI (each letter stands for a syllable),
which were randomly concatenated without immediate repetition. L1
was composed of bisyllabic words, whichwere played as isolated utter-
ances. In the main experimental condition (the overlapping condition),
the words of L1 reoccurred as word-external transitions in L2 (e.g., CD
occurred in L2 when ABC was followed by DEF). In a control condition,
the pairs of events composing the words of L1 never occurred in L2
(e.g., CA could not occur, because repetitions of words were not
allowed). In a subsequent two-alternative forced choice (2AFC) test,
participants were exposed to pairs composed of a word and a part-
word of L2 (see Table 1). For each pair, participants had to decide
which item seemed more like a word of the imaginary language they
were exposed to before.

The underlying intuition was that a TP-based approach should pre-
dict above-chanceperformance in the 2AFC test,whatever L1. This is be-
cause, as shown in Table 1, noneof the pairs of syllables played in L1was
included in the test items, whether words or part-words, and this was
true for both the overlapping and control conditions. PARSER should
also predict above-chance performance in the control condition. Indeed,
because the chunks built from L1 are no longer present in L2, they will
be progressively forgotten, and learners have only to build new chunks
from L2. However, crucially, L1 chunks continue to be perceived during
L2 presentation in the overlapping condition, and because they are
between-word transitions in this new context, they could misguide
the segmentation of L2, as explained above. As a consequence, the
score in the overlapping condition should be lower than the score in



Table 1
Design for the simulations and the experiment.

L1 L2 Part-words in test

Overlapping Control

CGH
CD CA ABC FAB
FG FD DEF IDE
IA IG GHI BCG

EFA
HID

Note. Participants were familiarized with a first language (L1), in which the words were
played in isolation. In a second phase, participants were exposed to a continuous speech
stream (L2), which differed from L1 to various extents (Overlapping = the words of
L1 were between-word transitions in L2; Control = L1 and L2 shared no pair of sylla-
bles). The final phase was a 2AFC test contrasting the words from L2 to part-words. The
letters are used as placeholders for randomized syllable instantiations.
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the control condition, and potentially below chance. The next section
presents computational simulations, which lead to complete and refine
these speculative predictions.

2. Simulations

2.1. A TP-based model

From Saffran, Newport et al. (1996), and inmost subsequent studies
from the same laboratory, predictions of participants' performance
were based on a comparison of the TPs between syllables composing
the words and the part-words, such as inferred from the composition
of the language. For instance, in a language comprising six words of
equal frequency, the TP between a terminal syllable of a word and the
initial syllable of another word is said to be .20 because there are five
possible successors (word repetitions are not allowed), and this value
is invariant whatever the duration of the language.

In our study, the succession of two languages involving (partially)
the same syllables makes the theoretical assessment of the TPs for L2
a little more complex. Indeed, at least some of the TPs for L2 are affected
by the structure of L1, but to a various extent depending on the length of
L2. To consider the endpoints, at the very beginning of L2, the TPs are
those of L1, while the influence of L1 over the TP pattern of L2 ap-
proaches nullity as L2 goes to an infinite length. The concrete values
for a given experiment are in-between. In the following calculations,
the number of repetitions of the words 2 from L1 was set to a fixed
value, which was selected to be well-suited for the subsequent experi-
ment (each word was played 28 times, which generates two minutes
of oral production). For L2, the number of item repetitions was varied
along a large range, roughly following an exponential function (each
word occurred 16, 24, 36, 54, 80, 120, 180, or 270 times). The pairwise
TPs were computed from frequency counts performed on actual in-
stances of languages as indicated in the following standard equation.
For a pair xy:

p yjxð Þ ¼ p xyð Þ=p xð Þ≈freq xyð Þ=freq xð Þ:

Because the TPs for the part-wordsmay slightly vary as a function of
word order, the values were averaged over 100 randomly generated
languages.
2 Artificial languageswere continuous in anoverwhelming proportion of earlier studies,
so that there is no consensus about the best way to code the spaces between thewords of
L1. In the data reported in Fig. 1, the space betweenwordswas coded as a pseudo-syllable.
Kurumada, Meylan, and Frank (2013) did not proceed this way, and made counts only
within each utterance. When calculated as in Kurumada et al., all the values reported in
Fig. 1 were higher, but the conclusions remain strictly identical.
For each trisyllabic test item, XYZ, a value was computed as the
mean of TPs for the pairs XY, YZ, and X_Z. Note that Saffran et al. consid-
ered only the first two pairs. We added X_Z, as did Endress and Mehler
(2009), in keeping with recent studies showing that distant dependen-
cies can be learned under some conditions (e.g., Gomez, 2002; for a brief
review, see Perruchet, Poulin-Charronnat, & Pacton, 2012). Without L1,
the theoretical values should be 1 for the words of L2, and .66 for the
mean TPs of part-words (e.g., for the part-word CGH, p(G|C) = .5,
p(H|G) = 1, and p(H|C) = .5). The question is how the prior exposure
to L1 affects these values, and in particular, whether the influence of
L1 differs as a function of conditions (overlapping vs. control).

Fig. 1 reports themean TPs for words and part-words for each of the
two conditions and for each length of L2. Only two curves are apparent
out of the expected four ones, because the values for the overlapping
and the control conditions were almost perfectly superimposed for
each lengthof L2. The TPs for bothwords and part-words asymptotically
converged towards their theoretical values (1 and .66 for words and
part-words, respectively), but they started from lower values. Impor-
tantly, for each length of L2, the TPs for wordswere substantially higher
than the TPs for part-words (the two curves evolved roughly in parallel;
all ps b .001).

As in studies by Saffran and colleagues, the quantitative assessment
of TPs was not devised to be translated into a quantitative score in a
2AFC test. However, the pattern of TPs is straightforward enough to
allow for clear-cut qualitative predictions. The underlying reasoning is
that, to quote Endress andMehler (2009), “participants are more famil-
iar with items with stronger TPs than with items with weaker TPs”
(p. 352), and therefore the participants' choice in the 2AFC test should
be guided by the mean TP for each item of the pair (see also Frank,
Goldwater, Griffiths and Tenenbaum, 2010; Kurumada, Meylan and
Frank, 2013). In keeping with this reasoning, two predictions follow.
First, no difference is expected between the overlapping and the control
group. Second, the pattern of TPs should ensure the selection of words
over part-words and hence above-chance performance in the 2AFC
test in all cases, even after the shortest duration of training.
Fig. 1.Mean internal TPs for the “words” (full line) and the “part-words” (dotted line) de-
scribed in Table 1, as a function of the length of L2. Data for the overlapping condition and
the control condition are almost exactly superimposed. For the words, the TPs computed
over 100 languages did not vary at all (all languages comprised the same number of
words), and for the part-words, the variations due to the specific word order were too
small to be represented (all standard errors b .004).



Fig. 2.Probability for a “word” (full line) and a “part-word” (dotted line) fromTable 1 to be
in PARSER's lexicon in the control condition (circles) and in the overlapping condition
(cross), as a function of the length of L2. Error bars represent the standard error of the
mean.
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2.2. PARSER

The very same languages were entered into PARSER.3 L1 was
entered as individual words, a procedure that prevents the formation
of provisional chunks that would span over successive words. L2 was
shown as a continuous sequence of words.

A point of debate in computational research is the selection of pa-
rameter values. In PARSER, the rates of decay and interference (and a
few other, minor parameters) may be tuned to comply with the mate-
rials or the study population. However, the general strategy adopted
in earlier studies (e.g., Frank et al., 2010; Giroux & Rey, 2009;
Kurumada et al., 2013; Perruchet & Peereman, 2004; Perruchet, Tyler,
Galland, & Peereman, 2004) has been to first apply the parameters
used in the initial study (Perruchet & Vinter, 1998), which often turns
out to be appropriate for studies with other objectives. Because we
were not interested in maximizing the quality of fit, but instead in ex-
amining whether some crucial predictions were actually constitutive
of the model, all the subsequent simulations have been performed
with these standard parameters.

As for the TP-based model, the length of L2 was varied, with each
word occurring 16, 24, 36, 54, 80, 120, 180, or 270 times. Fig. 2 reports
the probability for a word and a part-word to be found by PARSER
(i.e., to be in the model's lexicon at the end of familiarization) averaged
over 100 runs for each condition, for each length of L2. For the control
condition (full dots), words are muchmore likely to be in PARSER's lex-
icon than part-words. 4 This ensures that words will be selected much
more often than part-words in a 2AFC test. 5 By contrast, for the overlap-
ping condition (empty dots), the probability is in fact higher for a test
part-word than for a word to be in PARSER's lexicon (except for the
longest exposure to L2; the difference reached significance, ps b .05,
for L2 comprising 24, 36, and 80 occurrences of eachword). Two predic-
tions follow. First, PARSER predicts lower performances in the overlap-
ping condition than in the control condition. Second, given the relative
scores for words and part-words in the overlapping condition, the
score in a 2AFC test should be belowchance-level in this condition. As an-
ticipated, these predictions are opposite to the predictions of a TP-based
model.
3 All the simulations reported in this paper were run under U-learn (Perruchet, Robinet,
& Lemaire, submitted for publication), which is freely available at the following URL:
http://leadserv.u-bourgogne.fr/~perruchet/. The reported results can be exactly
reproduced by setting “Current run” as the random seed.

4 In the control condition, the number of words in the lexicon (slightly) increased be-
tween 16 and 54 repetitions, but, surprisingly decreased with further training. This indi-
cates that some words, once acquired, disappear from PARSER's lexicon with further
practice. In fact, the phenomenon occurs for a straightforward reason: PARSER is a model
of unsupervised learning, and there is no internal controller to tell the chunking process to
stop once aword has been discovered. For instance, ifABC andDEF frequently occur in suc-
cession in the language, this may lead to the creation of the ABCDEF unit, which in turn
concurs to eliminate ABC and DEF from the lexicon. In most cases, the creation of multi-
word units does not happen because they are not cohesive enough (and in natural lan-
guage,words have distinct referents, which help tomaintain them as distinct units). How-
ever, the small number of words in the present study (and the fact they have no referent)
makes possible the creation of units embedding several words. Increasing the forgetting
rate in PARSER would have prevented, or at least reduced such an undesirable effect.

5 The chance of finding a part-word when drawing at random a 3-syllable unit from a
language composed of trisyllabicwords is higher than the chance of finding a word. How-
ever, the score displayed in Fig. 2 is the probability of being in PARSER's lexicon for a given
test part-word, not for all the test part-words listed in Table 1, and even less for all potential
part-words in L2. By the same token, this score is independent of the number of test part-
words (the fact that there is twice more test part-words than words is inconsequential).
Given that the 2AFC test contrasts a given word to a given part-word, the reported prob-
abilities can be directly translated into a score of discrimination: A higher probability for
the words than for the part-words to be in PARSER's lexicon entails that the score in a
2AFC test should be above chance-level, and likewise, a higher probability for the part-
words than for the words to be in PARSER's lexicon entails that the score in a 2AFC test
should be below chance-level.
3. Experiment

In the present experiment, L1 was played as a succession of separate
words. In a recent study devised to examine the influence of prior
knowledge on the subsequent segmentation of a continuous speech
stream, Lew-Williams and Saffran (2012) played a list of words separat-
ed by a short pause during the pre-exposure phase. We used a similar
strategy to be sure that the words composing L1, and only the words,
were learned. L2 was played as a continuous stream of syllables.

3.1. Method

3.1.1. Participants
Forty-four undergraduate students from the University of Bour-

gogne took part in the experiment for partial fulfillment of a course re-
quirement. They were randomly assigned to one of the two conditions
with 22 participants per condition.

3.1.2. Material
Two languages, L1 and L2, were prepared for each participant. L1

differed according to the conditions (overlapping vs. control). L2 was
common to all participants, andwas obtained by randomly concatenat-
ing thewords ABC,DEF, and GHI (the letters are used as placeholders for
randomized syllable instantiations), except that the same word never
occurred twice in immediate succession. The CV syllables /bi/, kĩ/, /do/,
/te/, /dã/, /pa/, /tu/, /gy/, and/põ/ were ascribed to the letters used in
Table 1. Participants in the overlapping condition and in the control con-
dition were yoked, in such a way that the syllable/letter matching was
the same for each pair of participants, to ensure that any difference
between conditions cannot be attributed to an a priori preference for
specific items. However, the syllable/letter matching differed for each
pair of yoked participants, to prevent the influence of irrelevant factors
(e.g., phonological preferences, similarity with words of the natural
language).

The speech was synthesized using the MBROLA speech synthesizer
(http://tcts.fpms.ac.be/synthesis/; Dutoit, Pagel, Pierret, Bataille, & Van
Der Vrecken, 1996) with the FR2 diphone database. The mean syllable

http://tcts.fpms.ac.be/synthesis/
http://leadserv.u-bourgogne.fr/~perruchet/


Fig. 3. Percentage of correct responses as a function of whether the probabilistic structure
of L1 and L2 partially overlapped (overlapping) or not (control). Each dot represents a
participant, and the corresponding value on the Y-axis indicates the center of the class
interval in which the score of this participant falls (e.g., 40 stands for the [35, 45[interval).
The gray line indicates chance level.

5P. Perruchet et al. / Acta Psychologica 149 (2014) 1–8
duration was 232 ms. Progressive fade-in and fade-out were applied to
the first and last 5 s of L2. Both languages, aswell as the test items, were
played through headphones connected to a PC computer.

3.1.3. Procedure
Participants were told that they would have to listen to a fewwords

of an imaginary language. Each of the threewords of L1was repeated 28
times. The words were separated by short pauses, which varied ran-
domly in duration from 500ms to 1500 ms. The total duration of L1, in-
cluding the pauses, was approximately 2 min.

Then participants were told that they would have to listen to a sam-
ple of another imaginary language. The motivation for presenting L2 as
another language was to prevent strategies consisting in the explicit
search of L1 words, or more generally the search of bisyllabic items,
while listening to L2. Participants were asked to avoid engaging in ana-
lytic, problem-solving activities. They were exposed to L2 as a continu-
ous speech stream. The words were played in random order for about
6 min, each word occurring 180 times. As an aside, this number of rep-
etitions exceeds the values for which PARSER predicts below-chance
performance in the overlapping condition, as shown in Fig. 1. The para-
dox is only apparent, however, because it has been repeatedly observed
that PARSER tends to outperform human participants when trained
with the same corpus (e.g., Perruchet & Vinter, 1998). Using a longer
corpus for human participants is thus theoretically motivated, and
would make below-chance scores still more remarkable if they are ob-
tained in these conditions.

After exposure to the speech stream, participantswere told that they
would be presented with pairs of items, and that they would have to
judge, for each pair, which item seemed more like a word of the imagi-
nary language they were exposed to before. There were 36 pairs of
items, composed of the repetition of 18 different pairs of items.
Among the 18 pairs, 12 pairs comprised one word and one part-word.
Each of the three words was crossed with four different part-words, se-
lected among the six part-words shown in Table 1. This resulted in a dif-
ference of frequency between words and part-words because each
word occurred four times, while each part-word occurred only twice.
This may be a source of bias, because participants may select the
words on the basis of their familiarity induced during the test. To pre-
vent this bias, six additional pairs were composed of two part-words,
in such away that overall, eachword and each part-wordwere present-
ed equally often (i.e., four times). Each pair of two part-words
contrasted one 3-1-2 item (i.e., an item composed from the last syllable
of a word and the first two syllables of another word; the first three test
items in Table 1 are 3-1-2) and one 2-3-1 item (i.e., an item composed
from the last two syllables of a word and the first syllable of another
word; the last three test items in Table 1 are 2-3-1). The members of
each pair were separated by a 500-ms interval. The order of the items
within a pair, as well as the order of the pairs in the test sequence,
was randomized, with a different randomization for each participant.

3.2. Results

Although we had no specific expectation about the test pairs
contrasting two part-words, the data were analyzed. There was no sig-
nificant difference between the overlapping and the control groups,
t(42) = 1.21, p = .232, and overall the 3-1-2 and 2-3-1 part-words
were selected equally often (49.24% vs. 50.76% respectively, t(43) =
0.268, p = .79). The following analyses concern the word/part-word
pairs.

The rate of correct responses is shown in Fig. 3 as a function of
condition. Overall, the pattern of results confirmed PARSER's main
predictions. The mean performance for the overlapping group was
lower than for the control group, F(1, 42) = 7.397, p=.009, η2;p= .15.

Crucially, the mean score of the overlapping group was significantly
below chance, M = 44.13, SD = 13.22, t(21) = 2.083, p = .049,
d = 0.44. To examine whether this score was in the range predicted
by PARSER, a score in the 2AFC test was computed from the simulated
data reported in Fig. 2. As in Perruchet and Poulin-Charronnat
(2012b), a response was generated for each pair of test items, as a func-
tion of the representation of the word and the part-word in the internal
lexicon of themodel. If neither theword nor the part-wordwas present,
then the score was set to 50. If only thewordwas present, the scorewas
set to 100, and if only the part-word was present, the score was set to 0.
If both the word and part-word were in the internal lexicon of the
model, the response was set to either 100 or 0 as a function of whether
the weight of the word was higher or lower (respectively) than the
weight of the part-word. A mean score was computed for each run,
and data were averaged over 100 runs for each length of L2. The mean
scores for the overlapping condition were 45.75, 45.75, 46.80, and
46.92 for L2 comprising 24, 36, 54, and 80 occurrences of each word,
respectively. These values are close from the observed performance,
despite the fact that no parameter adjustment was brought out to
improve the quality of fitting.

Participants' scores for the control condition were only marginally
above chance,M= 54.36, SD= 11.68, t(21)= 1.749, p= .094. Neither
the TP-based model, nor PARSER was predictive of a so low score. In-
deed, the TPs for words were substantially higher than the TPs for
part-words even after the shortest exposure to the language (around
.8 and .4 respectively, see Fig. 1). Likewise, using the method described
above to infer a score in the 2AFC task from the items present in
PARSER's lexicon (and reported in Fig. 2), PARSER produced more
than 70% correct responses in the control condition after the shortest
training duration. A possibility is that the occurrence of pairs of part-
words in the 2AFC test had a detrimental influence on the responses
to other word/part-word pairs, due to the fact that no correct response
could be provided.

Another, nonexclusive possibility is that learning L2 was made diffi-
cult due to the prior presentation of another language (partially) shar-
ing the same syllables. Earlier studies in which participants heard in
succession two artificial speech flows differing in their statistical struc-
ture suggest that such a factor may have played a substantial influence.
Gebhart, Aslin, and Newport (2009) showed that, when there was no
explicit cue to identify the shift in languages, only the first of the two
structures was learned. However, participants are able to learn two lan-
guages without any deficit when each language is individuated by
strong contextual cues, such as talker's voice (Gebhart et al., 2009;
Weiss, Gerfen, & Mitchel, 2009). Our paradigm lies somewhere in be-
tween these two extremes: L1 and L2 were produced by the same syn-
thetic voice, but the shift between the two languages was clearly
marked, and participants were informed that they will hear another
imaginary language at the outset of L2. In this regard, our situation is
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close to that of Franco, Cleeremans, andDestrebecqz (2011). Under con-
ditions similar to ours, Franco et al. showed that L2was learned, but to a
lesser extent than when the same language was played in isolation.

Besides the general consequences of hearing two languages in im-
mediate succession, the low score of participants in the control condi-
tion may also be due to specific properties of L1. Given that L1 was
segmented into words, it provided some information about positional
information (e.g., which syllable may begin a word). Participants may
have exploited this kind of knowledge when running the 2AFC test.
Now, as may be seen in Table 1, the test part-words either began or
ended as the words of L1, whereas this was not the case for the test
words. This may have favored the selection of part-words.

Whatever the explanation given for the low scores of participants in
the control group, it is worth stressing that it leaves our main conclu-
sions unchallenged. The interpretation of the effects observed in the
overlapping group remains intact. Even the conclusions issued from a
comparison between the overlapping and the control groups are not af-
fected, because the factors evoked above as potentially detrimental for
the learning of L2 were identical across the two groups. Notably, the
words from L1 shared the same individual syllables at the same position
in the overlapping and control conditions, and therefore the possible
exploitation of positional information is unable to account for the
observed difference in the two conditions.

4. Discussion

Although relying on very different processes, the TP-based approach
and the chunk-based approach to word segmentation appear to be sur-
prisingly difficult to dissociate.We propose here a procedure testing the
influence of a first language, L1, on the segmentation of a second lan-
guage, L2. When L1 and L2 overlapped in such a way that the words of
L1 became word-external transitions of L2, predictions were opposite
according to whether learning is thought of as mediated by the compu-
tation of TPs or by the creation of chunks. The direct computation of TPs
predicted a preference for thewords over the part-words of L2 in a 2AFC
test, with predicted scores being identical to the scores of a control
group, in which L1 was unrelated to L2. Simulations run with PARSER
(Perruchet & Vinter, 1998), a chunk-basedmodel, also predicted a pref-
erence for words over part-words in the control group. However, when
L1 overlappedwith L2, the segmentation of L2was found to be impaired
until reaching below-chance level, at least before extensive exposure to
L2 reverses the effect. Overall, the results obtained in the present exper-
iment with adult participants confirmed PARSER's predictions.

A pilot study based on a similar experimental design was presented
at a workshop on implicit learning (Perruchet, 2004), and Franco and
Destrebecqz (2012) explored a variant of the method. They reported
results that do not confirm PARSER's predictions. If any, their data fit
better with the predictions of a TP-based approach. The evidence pro-
vided by Franco and Destrebecqz can hardly be construed as a challenge
for our conclusions, however, mainly because they did not use artificial
languages in their experiments. The authors used a sequence of nonlin-
guistic visual targets that could appear at one of several possible posi-
tions on a touch-sensitive screen monitor. Participants were instructed
to press the location of each target as fast as possible. Among many
other consequences, the timing was considerably slowed down with
regard to artificial language studies, with the “words” in Franco and
Destrebecqz (i.e., a sequence of three to-be-responded visual stimuli)
lasting more than 2 s on average. Moreover, while the duration of
words is constant for a given experiment in an overwhelming propor-
tion of artificial language studies, the duration of “words” in the Franco
and Destrebecqz's Serial Reaction Time (SRT) task varied, given that it
included participants' RTs on each of the stimulus. Hoch, Tyler, and
Tillmann (2013) observed that learning was better when the artificial
language is composed of regular-length units rather than irregular-
length units. Finally, responding to each event might have further im-
peded the formation of multi-event units in Franco and Destrebecqz's
experiments. To conclude, Franco and Destrebecqz's results do not chal-
lenge our conclusions for the issue of word segmentation, but they raise
an interesting question regarding the generality of the mechanisms of
chunking over different domains. Further explorations are needed on
this point.

The present study focused on PARSER. This does not entail that
PARSER is the only chunk-based model of segmentation that is able to
account for the data we report in our experiment. We run pilot simula-
tionswith amodel relying onMinimumDescription Length (MDL) prin-
ciples, theMDLChunker of Robinet et al. (2011, see Footnote 3). Overall,
the predictions of the MDLChunker concerning the better performance
in the control condition were similar to those of PARSER. The
MDLChunker also predicted below-chance scores for the overlapping
group, although this predictionwas limited to the very early stage of fa-
miliarization with L2. The predictions of other MDL-based models (e.g.,
Frank et al., 2010; Orbán, Fiser, Aslin, & Lengyel, 2008), and the predic-
tions of a recent chunk-based connectionistmodel (French, Addyman, &
Mareschal, 2011) should be also examined through systematic and
large-scale simulations. Pending further investigations, a conservative
conclusion could be that our results do not reveal specific advantages
of PARSER over all other models, but more generally the ability of
chunk-based models to account for the data.

The question that remains to be considered is now: To what extent
are our data actually inconsistent with the predictions of a TP-based
model? It could be objected, for instance, that our designwas inappropri-
ate to reveal an effect of L1 on the processing of L2. After hearing L1, par-
ticipants in our experiment were instructed that they will have to listen
to another imaginary language to prevent explicit strategies, and this
could have led them to process the two languages along independent
pathways. The literature on bilingualism, however, makes this hypothe-
sis implausible. Many studies have reported cross-linguistic effects in bi-
linguals in both visual and auditory word recognition (Dijkstra, 2005;
Kroll & Dussias, 2013, for reviews). The orthographic and phonological
characteristics of the native language have been shown to influence visu-
al word recognition in L2 (Ota, Hartsuiker, & Haywood, 2010; Wang,
Koda, & Perfetti, 2004). Still more relevant for our concern, the similarity
of the phonotactic structures between L1 and L2 affects L2 learnability
(Ellis & Beaton, 1993) and the phonotactic structure of L1 contributes
to continuous speech segmentation in L2 (Weber & Cutler, 2006). Also,
artificial words extracted from an artificial speech flow have been
shown to be quickly lexicalized (i.e., became able to influence natural
language processing), even though the artificial speech flow was
not construed as an excerpt of natural language by the listeners
(e.g., Fernandes, Kolinsky, & Ventura, 2009).

Another objection would be that because the words composing L1
were shown in isolation, the learners did not engage the mechanisms
at play when faced with a continuous speech flow. In particular, there
would be no need to compute the TPs between the constituent syllables
of L1, and hence, genuine statistical learning would start only with ex-
posure to the continuous speech flow of L2. However, assuming that
L1 was not influential, the scores of the participants in the overlapping
condition should have been above chance and similar to the scores of
the control group, given that participants heard exactly the same L2 in
the two conditions. The data clearly show that this was not the case:
the segmentation of L2 was affected by the nature of L1.

Another argument against our conclusions could be that calculating
piecemeal TPs for the test items, as done above, is irrelevant, and that
what needs to be considered is the closeness in the overall distribution
of TPs for L1 and L2. A natural intuition would be that updating the TPs
computed from L1 to fit with L2will be all the easier as the TPs of L2 are
closer to those of L1. Analyzing Table 1 indicates that the two distribu-
tions of TPs (L1, L2) are closer to each other in the overlapping condition
than in the control condition. Indeed, for the overlapping condition,
some of the TPs that were set to 1 in L1 (e.g., CD) become .50 in L2
(C can be followed by D and G). By contrast, for the control condition,
all TPs change drastically, from 1 to 0 or from 0 to 1. It follows that
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learning L2 should be easier for the participants trained in the overlap-
ping condition (the TP distributions of L1 and L2 partially overlap) than
for those trained in the control condition. Empirical data revealed the
exact opposite, ruling out the objection.

A last possibility was suggested by a reviewer of an earlier version of
this paper. The starting point consists in reversing the postulate above,
and to posit that segmenting L2 will be all the easier as the TPs of L2 are
farther away from those of L1. Far from being an ad-hoc amendment,
this alternative postulate is reminiscent of a view that has a long and ven-
erable history in the area of conditioning and associative learning, since
Kamin (1969) and the importance allocated to the concept of “surprise”.
Related views have been developed in other research domains, such as
the conflict monitoring theory (e.g., Botvinick, Braver, Barch, Carter, &
Cohen, 2001). One interpretation is that learning depends on the amount
of attention devoted to thematerials, and the surprise provoked by anun-
expected or conflicting event is undoubtedly more prone to capture
learner's attention than a perfectly predictable event (e.g., Pearce & Hall,
1980). Given that, as analyzed above, the TP distribution for L2 is more
surprising for the participants in the control group than for the other par-
ticipants, this leads to predict better performance in the control condition
than in the overlapping condition. This prediction fits well with our data.
However, this line of reasoning remains unable to account for the below-
chance score of the overlapping group. The amount of surprise or conflict
is assumed to modulate the speed to which participants tune themselves
to the probabilistic structure of L2. Even if one takes for granted that the
low level of attention of participants faced with the overlapping L2
slows down this tuning, or even prevents it altogether, there is no way
to explain that learners reverse the pattern of TPs present in L2.

To sum-up, we fail to see how the reported data could be
encompassed within a pure TP-based approach. This does not mean
that these data invalidate this approach, for at least two reasons. Firstly,
the predictions of a TP-basedmodel were drawn from direct TP compu-
tations. Simulations with Simple Recurrent Networks (SRNs) have been
sometimes conceived as an alternative to TP computations to test the
same framework (e.g., Christiansen, Allen, & Seidenberg, 1998). It
looks as somewhat unlikely that an SRN, which basically computes sta-
tistics (Redington & Chater, 1998), achieves to predict that the process-
ing of L1 could elicit the observed preference for the part-words over
the words of L2 in the overlapping condition, given that (1) these test
items share no pair of syllables with the words of L1 and (2) part-
words are both less frequent and less cohesive in terms of word-
internal TPs than are words. Although Franco and Destrebecqz (2012)
did not perform actual simulations, they also claimed that an SRN
would not predict this kind of data pattern, as we observed here. How-
ever, given the huge number of parameters that can be manipulated in
SRNmodels, it cannot be asserted that the observed data pattern is def-
initely out of reach of this class of models without running extensive
computational investigations.

Secondly, even if an SRN turns out to be unable to account for our
data, this would not mean that statistical computations did not occur.
Indeed, advocates of a TP-based view do not claim that statistical com-
putations are the only mechanisms involved in word segmentation. It
remains possible to argue that TPs are computed, but that their effects
are overshadowed or reversed by the action of additional mechanisms,
such as those involved in chunk-basedmodels. The unique advantage of
chunk-based models is that they directly account for the present result
patternwithout any ad-hoc adjustments. In this regard, the data report-
ed in this paper strengthen other supporting evidence for chunk-based
models in the domain of word segmentation (e.g., Frank et al., 2010;
Giroux & Rey, 2009; Kurumada et al., 2013; Perruchet & Poulin-
Charronnat, 2012b; Perruchet & Tillmann, 2010).
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